免费 无码进口视频|欧美一级成人观看|亚洲欧美黄色的网站|高清无码日韩偷拍|亚太三区无码免费|在找免费看A片色片一区|激情小说亚洲精品|91人妻少妇一级性av|久久国产综合精品日韓|一级美女操逼大片

總結

離散數(shù)學知識點總結

時間:2024-07-01 15:14:46 總結 我要投稿
  • 相關推薦

離散數(shù)學知識點總結

  同時要善于總結,在學習《離 散數(shù)學》的過程,對概念的理解是學習的重中之重。本文就來分享一篇離散數(shù)學知識點總結,希望對大家能有所幫助!

離散數(shù)學知識點總結

  一、認知離散數(shù)學

  離散數(shù)學是計算機科學基礎理論的核心課程之一,是計算機及應用、通信等專業(yè)的一門重要的基礎課。它以研究量的結構和相互關系為主要目標,其研究對象一般是有限個或可數(shù)個元素,充分體現(xiàn)了計算機科學離散性的特點。學習離散數(shù)學的目的是為學習計算機、通信等專業(yè)各后續(xù)課程做好必要的知識準備,進一步提高抽象思維和邏輯推理的能力,為計算機的應用提供必要的描述工具和理論基礎。

  1.定義和定理多

  離散數(shù)學是建立在大量定義、定理之上的邏輯推理學科,因此對概念的理解是學習這門課程的核心。在學習這些概念的基礎上,要特別注意概念之間的聯(lián)系,而描述這些聯(lián)系的實體則是大量的定理和性質(zhì)。在考試中有一部分內(nèi)容是考查學生對定義和定理的識記、理解和運用,因此要真正理解離散數(shù)學中所給出的每個基本概念的真正的含義。比如,命題的定義、五個基本聯(lián)結詞、公式的主析取范式和主合取范式、三個推理規(guī)則以及反證法;集合的五種運算的定義;關系的定義和關系的四個性質(zhì);函數(shù)(映射)和幾種特殊函數(shù)(映射)的定義;圖、完全圖、簡單圖、子圖、補圖的定義;圖中簡單路、基本路的定義以及兩個圖同構的定義;樹與最小生成樹的定義。掌握和理解這些概念對于學好離散數(shù)學是至關重要的。

  2. 方法性強

  在離散數(shù)學的學習過程中,一定要注重和掌握離散數(shù)學處理問題的方法,在做題時,找到一個合適的解題思路和方法是極為重要的。如果知道了一道題用怎樣的方法去做或證明,就能很容易地做或證出來。反之,則事倍功半。在離散數(shù)學中,雖然各種各樣的題種類繁多,但每類題的解法均有規(guī)律可循。所以在聽課和平時的復習中,要善于總結和歸納具有規(guī)律性的內(nèi)容。在平時的講課和復習中,老師會總結各類解題思路和方法。作為學生,首先應該熟悉并且會用這些方法,同時,還要勤于思考,對于一道題,進可能地多探討幾種解法。

  3. 抽象性強

  離散數(shù)學的特點是知識點集中,對抽象思維能力的要求較高。由于這些定義的抽象性,使初學者往往不能在腦海中直接建立起它們與現(xiàn)實世界中客觀事物的聯(lián)系。不管是哪本離散數(shù)學教材,都會在每一章中首先列出若干個定義和定理,接著就是這些定義和定理的直接應用,如果沒有較好的抽象思維能力,學習離散數(shù)學確實具有一定的困難。因此,在離散數(shù)學的學習中,要注重抽象思維能力、邏輯推理能力的培養(yǎng)和訓練,這種能力的培養(yǎng)對今后從事各種工作都是極其重要的。

  在學習離散數(shù)學中所遇到的這些困難,可以通過多學、多看、認真分析講課中所給出的典型例題的解題過程,再加上多練,從而逐步得到解決。在此特別強調(diào)一點:深入地理解和掌握離散數(shù)學的基本概念、基本定理和結論,是學好離散數(shù)學的重要前提之一。所以,同學們要準確、全面、完整地記憶和理解所有這些基本定義和定理。

  4. 內(nèi)在聯(lián)系性

  離散數(shù)學的三大體系雖然來自于不同的學科,但是這三大體系前后貫通,形成一個有機的整體。通過認真的分析可尋找出三大部分之間知識的內(nèi)在聯(lián)系性和規(guī)律性。如:集合論、函數(shù)、關系和圖論,其解題思路和證明方法均有相同或相似之處。

  如何應對考試:一般來說,離散數(shù)學的考試要求分為了解、理解和掌握。了解是能正確判別有關概念和方法;理解是能正確表達有關概念和方法的含義;掌握是在理解的基礎上加以靈活應用。為了考核學生對這三部分的理解和掌握的程度,試題類型一般可分為:判斷題、填空題、選擇題、計算題和證明題。判斷題、填空題、選擇題主要涉及基本概念、基本理論、重要性質(zhì)和結論、公式及其簡單計算;計算題主要考核學生的基本運用技能和速度,要求寫出完整的計算過程和步驟;證明題主要考查應用概念、性質(zhì)、定理及重要結論進行邏輯推理的能力,要求寫出嚴格的推理和論證過程。

  學習離散數(shù)學的最大困難是它的抽象性和邏輯推理的嚴密性。在離散數(shù)學中,假設讓你解一道題或證明一個命題,你應首先讀懂題意,然后尋找解題或證明的思路和方法,當你相信已找到了解題或證明的思路和方法,你必須把它嚴格地寫出來。一個寫得很好的解題過程或證明是一系列的陳述,其中每一條陳述都是前面的陳述經(jīng)過簡單的推理而得到的。仔細地寫解題過程或證明是很重要的,既能讓讀者理解它,又能保證解題過程或證明準確無誤。一個好的解題過程或證明應該是條理清楚、論據(jù)充分、表述簡潔的。針對這一要求,在講課中老師會提供大量的典型例題供同學們參考和學習。

  通過離散數(shù)學的學習和訓練,能使同學們學會在離散數(shù)學中處理問題的一般性的規(guī)律和方法,一旦掌握了離散數(shù)學中這種處理問題的思想方法,學習和掌握離散數(shù)學的知識就不再是一件難事了。

  首先要明確的是,由于《離散數(shù)學》是一門數(shù)學課,且是由幾個數(shù)學分支綜合在一起的,內(nèi)容繁多,非常抽象,因此即使是數(shù)學系的學生學起來都會倍感困難,對計算 科學專業(yè)的學生來說就更是如此。大家普遍反映這是大學四年最難學的一門課之一。但鑒于《離散數(shù)學》在計算科學中的重要性,這是一門必須牢牢掌握的課程。既 然如此,在學習《離散數(shù)學》時,大家最應該牢記的是唐詩“熟讀唐詩三百首,不會做詩也會吟!睂W習過程是一個扎扎實實積累的過程,不能打馬虎眼。離散數(shù)學是理論性較強的學科,學習離散數(shù)學的關鍵是對離散數(shù)學(集合論、數(shù)理邏輯和圖論)有關基本概念的準確掌握,對基本原理及基本運算的運用,并要多做練習。

  《離散數(shù)學》的特點是:

  1、知識點集中,概念和定理多:《離散數(shù)學》是建立在大量概念之上的邏輯推理學科,概念的理解是我們學習這門學科的核心。不管哪本離散數(shù)學教材,都會在每一章節(jié)列出若干定義和定理,接著就是這些定義定理的直接應用。掌握、理解和運用這些概念和定理是學好這門課的關鍵。要特別注意概念之間的聯(lián)系,而描述這些聯(lián)系的則是定理和性質(zhì)。

  2、方法性強:離散數(shù)學的特點是抽象思維能力的要求較高。通過對它的學習,能大大提高我們本身的邏輯推理能力、抽象思維能力和形式化思維能力,從而今后在學習任何一門計算機科學的專業(yè)主干課程時,都不會遇上任何思維理解上的困難!峨x 散數(shù)學》的證明題多,不同的題型會需要不同的證明方法(如直接證明法、反證法、歸納法、構造性證明法),同一個題也可能有幾種方法。但是《離散數(shù)學》證明 題的方法性是很強的,如果知道一道題用什么方法講明,則很容易可以證出來,否則就會事倍功半。因此在平時的學習中,要勤于思考,對于同一個問題,盡可能多 探討幾種證明方法,從而學會熟練運用這些證明方法。一般來說,由于這些概念(定義)非常抽象(學習《線性代數(shù)》時會有這樣的經(jīng)歷),初學者往往不能在腦海中 建立起它們與現(xiàn)實世界中客觀事物的聯(lián)系。這往往是《離散數(shù)學》學習過程中初學者要面臨的第一個困難,他們覺得不容易進入學習的狀態(tài)。因此一開始必須準確、 全面、完整地記住并理解所有的定義和定理。具體做法是在進行完一章的學習后,用專門的時間對該章包括的定義與定理實施強記。只有這樣才可能本課程的抽象能 夠適應,并為后續(xù)學習打下良好的基礎。

【離散數(shù)學知識點總結】相關文章:

物理知識點總結06-05

兒科知識點總結05-24

動量知識點總結05-31

英語知識點總結12-02

馬說知識點總結05-29

師說知識點歸納總結10-25

物理浮力知識點總結03-30

大學概率知識點總結11-08

初中物理的知識點總結大全11-16

思修知識點自考總結04-07